

Continual Flow Heat Treatment System for Container-based Toilets

Kate Bohnert

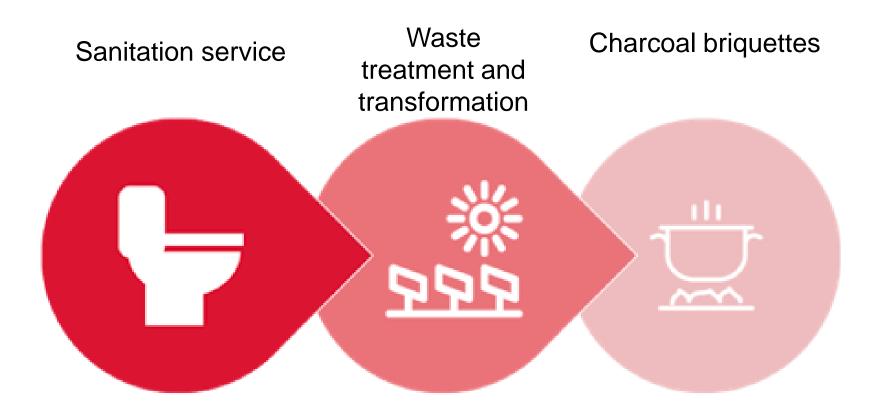
Jack Jones, Emily Woods

Sanivation

Traditional Waste Treatment is Expensive

Designed to minimize risk of disposing feces

- Little consideration for reuse or cost recovery
- Traditional waste treatment is expensive
- <5% waste treated before disposal¹
- 1. Gakubia, R., Pokorski, U., and Onyango, P. (2010) Upscaling access to sustainable sanitation. Kenya.



A Service Delivery Model Approach to FSM

Sanivation's Business Model

Original cost-effective solar design

A challenge to scale

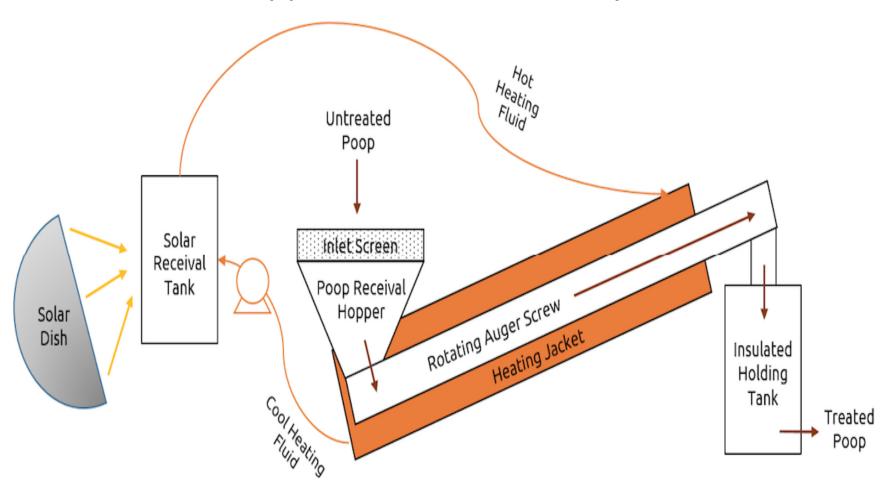
Properties	Parabolic Design
Scalable	-
Replicable	+
Cost-effective	++

How to treat more waste?

Designing a system to alleviate disposal of untreated waste

Design pilot system to treat waste for 500 pp/day

Replicate system in Kakuma Refugee Camp


Determine cost-effectiveness

Schematic of Continual Flow Heat Exchanger

An approach to a scalable system

Continual Flow Heat Exchanger in Naivasha

An approach to a scalable system

Containerized Continual Flow Heat Exchanger

An approach to a replicable system

Less than \$0.25 per person for treatment

An approach to a cost-effective system

	Old system	New Naivasha system	Kakuma system	Traditional WWTP
CapEx	\$0.602	\$39	\$18	\$~8 ³
OpEx	\$0.102	\$0.25	\$0.25	\$7 ³
Lifespan	2-3 years	5 years	5-10 years	30 years

- 2. Foote, A. et al. Rendering fecal waste safe for reuse via a cost-effective solar concentrator. *J Wash Dev*. 2017.
- 3. Dodane, P.H et al. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal. *Environ. Sci. Technol.* 2012.

Where Do We Go From Here?

Next steps and recommendations

Ongoing testing of microeffectiveness with CDC

OpEx costs to be refined in the next few months

Modifying system to take in alternative waste streams

The Power of Reuse Potential

Take-away message

 Waste treatment can be more <u>cost and energy efficient</u> when designed for <u>reuse</u> rather than <u>disposal</u>

Kate Bohnert kate@sanivation.com

