STeP

Sanitation Technology Platform

Determining the Economically Optimal Capacity Of A Decentralized Faecal Sludge Treatment Plant

Presenting: Philip Watson Andrea Stowell, Laura Morrison, Jamie Cajka

2017

The Sanitation Technology Platform

Please Note: This report is a good faith effort by RTI International to accurately represent information available via secondary and primary sources at the time of the information capture. The report is confidential and proprietary and only for internal uses and not for publication or public disclosure.

Sanitation Technology Platform

STeP

Introduction

Approach Illustrative Results Summary

As a supplier of pre-engineered FS treatment technologies, what capacity should I offer?

Why does capacity matter?

STeP

Sanitation Technology Platform

STeP

Introduction

Approach

Illustrative Results

Summary

To establish economically optimal capacity, the evaluation needs to be conducted at city level and then synthesized.

2

1

Determine economically optimal OP at city-level

Country			Populatior Density (people ł	•	Optimal J OP scale consideri g city size	- , , e
Name	<u> </u>	AccentC	km2)	1		- -
Conte di voir	e D-	Touba	2,20	10		00
Congo, the	De	Aketi	0,4			-0
Longo, the	De	Bandundu	4,43	00		50
Longo, the	De	Dasoko	4,63	10		50
Congo, the	De	Beni	5,13	18		50
Congo, the	De	Binga	1/	2		50
Congo, the	2 Ue	Boende	2	3		0
Congo, the	De	Bolobo	52	27		0
Congo, the	De	Boma	5,20)5	21	00
Congo, the	De	Bondo	22	20		0
Congo, the	De	Bosobolo	62	29		0
Congo, the	De	Bukama	11,33	91		0
Congo, the	De	Bulungu	6,70	D1		50
Congo, the	De	Bumba	6,49	99		50
Congo, the	De	Bunia	18,10	01	!	50
Congo, the	De	Businga	22	29		0
Congo, the	De	Buta	1,86	ì7		50
Congo, the	De	Butembo	4,21	19	1	00
Congo, the	De	Demba	1,71	10		0
Congo, the	De	Gandajika	3,79	97	1	00
Congo, the	De	Gbadolite	2,06	39	!	50
Congo, the	De	Gemena	4,26	64	!	50
Congo, the	De	llebo	2,85	54	!	50
Congo, the	De	Inongo	13	35		0
		1 .]			

Synthesize across countries of interest

STeP

Economically optimal capacity is the capacity at which a city's <u>total</u> fecal sludge management cost is minimized.

FS Collection, Delivery & Treatment Costs

A city's population density has a significant influence on economically optimal capacity.

Illustrative Example: radius required to collect 100 m³ / day from two urban areas in Bangladesh:

- Mirzapur: 3,000 / km², 3 km radius required
- Dhakar: 23,000 / km², 1 km radius required

Other aspects of the approach

Illustrative OP / FSTP Model

Performed analysis for ~4,000 towns & cities (>10,000 pop) across 13 countries*

3

Modeling considered a range of country & city-specific variables:

	Collection and Transport	Treatment
Country- specific factors	 Labor requirements & costs Truck capacity & speed Truck capital & operating costs Diesel costs 	End product pricesLabor costs
City-specific factors	 Population density 	 Target FSM population.

* Côte d'Ivoire, Congo, the Democratic Republic of the, Dominican Republic, Ghana, Haiti, India, Kenya, Nigeria, Pakistan, Philippines, Senegal, South Africa, Bangladesh

STeF

Sanitation Technology Platform

Introduction Approach **Illustrative Results** Summary

The biggest category is for 50 & 100 m³/day scale systems, but there is still potential need for larger scale systems.

Sanitation Technology Platform

The economically optimal scale of OP increases with increasing population density and target FSM population

Sanitation Technology

Platform

Average City FSM Target Pop (left)

Results

Average Population Density (right)

Larger African cities may benefit from larger capacity systems due to relatively low transport costs.

Share of Larger Capacity Economically Optimal OPs (> 350 m³ / day)

Introduction Approach Illustrative Results Summary

STEP Sanitation Technology Platform

In summary

- Matching capacity and city size minimizes costs.
- Total FSM cost is a trade-off:
 - Transport costs increase with scale.
 - Treatment costs decrease with scale.
- Population density significantly influences this trade-off.
- Consider other local & technology specific variables.
- Based on the example OP technology:
 - Need for small-scale solutions (e.g. 50-100 m³ / day).
 - Smaller but important opportunity for larger systems.

