A self-sustainable system for simultaneous wastewater treatment and electricity/biogas generation. A microbial fuel cell (MFC) generates electricity to power a microbial electrolysis cell (MEC) system to produce biogas.
This project aims to develop a self-sustainable system for simultaneous wastewater treatment and electricity/biogas generation. This hybrid system is composed of a microbial fuel cell (MFC) to generate electricity from wastewater to directly power a microbial electrolysis cell (MEC) system to produce biogas (biomethane and biohydrogen) for clean combustible fuel. Recent developments in bioelectrochemical systems (BESs) such MFCs and MECs enabled clean production of electricity and hydrogen from organic substrates in wastewater through the use of bacterial catalysis. However several challenges remain. MFCs have not been put to practical use because of its low power density compared with other fuel cell technologies. MEC technology needs external power to overcome the thermodynamic barriers to produce hydrogen gas.
The hybrid MFC-MEC coupled system being developed here directly generates electricity from wastewater using locally available electrochemically active bacteria, which is then utilized by the MFC/MEC system to generate high-purity biohydrogen. This biohydrgen can be then used as clean combustible fuel sources. The highly efficient and low-cost MFC-MEC system is enabled by 3D multi-length scale porous matrix electrodes decorated with carbon nanotubes and nanoparticle catalysts. This electrode can accelerate and significantly improve microbe-electrode interaction and thus improve the microbial electron transfer efficiency.
Bill & Melinda Gates Foundation Energy: electricity, hydrogen, fuel cells Fundamental research and engineering Global North America Product design and engineering Resource recovery University, education or research institution
Uploaded by:
Trevor Surridge (tmsinnovation)
Share this page on