Cookie tracking notice
Are we allowed to crumble with cookies and anonymous tracking?

We use cookies on our website. Some of them are essential for the operation of the site (so called session cookies), while others help us to improve this site and the user experience (tracking cookies). We use the application Matomo and the external service etracker to analyze your behavior on our website anonymously. Because we value your privacy, we are here with asking your permission to use the following technologies. You can change your settings any time via this link or the menu item in footer menu. For more information visit our Data Policy

Modelling of the Thermophysical Properties of Hydrolysed Urine and its Concentrates - Master thesis from the Pollution Research Group, at the University of KwaZulu-Natal (Durban, South Africa)

Dube, K. (2016)

Published in: 2016
Pages: 163

Author:
Dube, K.

Uploaded by:
Santiago Septien Stringel

Partner profile:
University of KwaZulu-Natal


2527 Views
17 Downloads


 Location of library entry

Content - Summary

In 2011, the Bill and Melinda Gates Foundation launched the Reinvent the Toilet Challenge (RTTC) to provide sustainable, sanitary amenities for 2.6 billion people who lack access to suitable toilet facilities. 16 research groups, including the Pollution Research Group, were awarded grants to develop concepts and to design prototypes of a toilet that would provide safe and sustainable treatment of human waste. To this end, various technologies were proposed and developed for the treatment of urine, to recover valuable nutrients and water.
However knowledge of the thermophysical properties of urine is key in the engineering design and optimization of urine treatment technologies. The aim of this project was to provide the RTTC grantees with experimental data that will inform optimised designs of their urine treatment units, particularly those required for the design and optimum operation of thermal and membrane separation processes. The properties investigated include: vapour pressure; osmotic pressure; electrical conductivity; and density.
To investigate the thermophysical properties of urine, synthetic solutions of hydrolysed urine were prepared at a series of concentrations, up to 10 fold. High precision measurements were undertaken for each property at temperatures ranging from 293 to 373 K. Vapour pressure was measured using a static apparatus and osmotic pressure data was calculated from the vapour pressure measurements. The density of the solutions was measured using an Anton Parr DMA 5000 densimeter that uses the vibration principle and electrical conductivity measurements were performed using a commercially available dip style cell (YSI model 3200).
Modeling of the experimental data was undertaken to assist the design engineer to calculate the thermophysical properties from the composition of hydrolysed urine. Two existing techniques for modeling were applied. In the first method, a geochemical speciation software, PHREEQC, was used to determine the chemical equilibria and distribution of the ions in the urine solutions at varying temperatures and concentrations. The speciation data was incorporated into thermodynamic models to predict the properties of the urine solutions. In the second technique, existing correlative models were used to fit the experimental data to best fit equations. These models can be incorporated into computer software used in chemical engineering design processes.
The accuracy of both techniques was verified by comparing the model calculations to the experimental data. The calculated properties, using both modelling techniques, were in good agreement with experimental data, and the average deviations were within ±2.0% for the studied concentration and temperature ranges. In conclusion, cases studies were done, to demonstrate the use of the urine data and models in the design of a multiple effect evaporator, thermal recompression evaporator, forward osmosis and reverse osmosis processes.

Additional information

Supervisors: Dr. Santiago Septien Stringel; Pr. Deresh Ramjugernath, Dr. Konstantina Velkushanova, Pr. Chris Buckley

Bibliographic information

Dube, K. (2016). Modelling of the Thermophysical Properties of Hydrolysed Urine and its Concentrates - Master thesis from the Pollution Research Group, at the University of KwaZulu-Natal (Durban, South Africa).

Filter tags

Case studies in other formats English Sub-Saharan Africa Urine

Download

MScEng Thesis - Modeling Urine Properties

Format: pdf file
Size: 2.33 MB

Share this page on    


Follow us on    

SuSanA Partners  currently 400 partners

Networks Circle

 

Latest SuSanA Blog Articles

SuSanA Blog »

SuSanA newsletter

Stay informed about the activities of SuSanA and its partners. The SuSanA newsletter is sent out around four times per year. It contains information about news, events, new partners, projects, discussions and publications of the SuSanA network.

Subscribe to newsletter »

 


close  

 

Resources and publications

Our library has more than 3,000 publications, factsheets, presentations, drawings etc. from many different organisations. It continues to grow thanks to the contributions from our partners.

Add item to library »

The three links below take you to special groups of items in the library for more convenient access:

Projects

The project database contains nearly 400 sanitation projects of many different organizations dealing with research, implementation, advocacy, capacity development etc. Advanced filtering functions and a global map are also available. Information on how and why this database was created is here.

People working for SuSanA partners can add their own projects through their partner profile page. You might need your SuSanA login upgraded for this purpose. Please contact us if you would like to add a project.


Trainings, conference and events materials

Missed important conferences or courses? Catch up by using their materials for self study. These materials have been kindly provided by SuSanA partners.

Shit flow diagrams, excreta flow diagrams (310 SFDs worldwide)

Shit flow diagrams (SFDs) help to visualize excreta management in urban settings. Access SFDs and more through the SFD Portal.

Emersan eCompendium

Humanitarian Sanitation Hub

Sanitation Workers Knowledge and Learning Hub

 


close  

 

Discussion forum

Share knowledge, exchange experiences, discuss challenges, make announcements, ask questions and more. Hint: Your discussion forum login is the same as your SuSanA login. More about the forum's philosophy »


Integrated content

We are hosting content from some other communities of practice and information-sharing portals. This section also provides a link to SuSanA's Sanitation Wikipedia initiative.

Suggest content to add »

SuSanA partners

Not yet a SuSanA partner? Show your organisation's support to SuSanA's vision and engage in  knowledge sharing by becoming partners.

Apply to become a partner »


Individual membership

Register as an individual member of SuSanA free of charge. As a member you can interact with thousands of sanitation enthusiasts on the discussion forum.  You can also get engaged in one of our 13 working groups and our regional chapters. Our FAQs explain the benefits further.

By getting a SuSanA login you can fully participate in the SuSanA community!

Register as a member

Login


Forgot your password?
Forgot your username?

 


close